Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation

  1. Mostafa Khezri,
  2. Alex Opremcak,
  3. Zijun Chen,
  4. Andreas Bengtsson,
  5. Theodore White,
  6. Ofer Naaman,
  7. Rajeev Acharya,
  8. Kyle Anderson,
  9. Markus Ansmann,
  10. Frank Arute,
  11. Kunal Arya,
  12. Abraham Asfaw,
  13. Joseph C Bardin,
  14. Alexandre Bourassa,
  15. Jenna Bovaird,
  16. Leon Brill,
  17. Bob B. Buckley,
  18. David A. Buell,
  19. Tim Burger,
  20. Brian Burkett,
  21. Nicholas Bushnell,
  22. Juan Campero,
  23. Ben Chiaro,
  24. Roberto Collins,
  25. Alexander L. Crook,
  26. Ben Curtin,
  27. Sean Demura,
  28. Andrew Dunsworth,
  29. Catherine Erickson,
  30. Reza Fatemi,
  31. Vinicius S. Ferreira,
  32. Leslie Flores-Burgos,
  33. Ebrahim Forati,
  34. Brooks Foxen,
  35. Gonzalo Garcia,
  36. William Giang,
  37. Marissa Giustina,
  38. Raja Gosula,
  39. Alejandro Grajales Dau,
  40. Michael C. Hamilton,
  41. Sean D. Harrington,
  42. Paula Heu,
  43. Jeremy Hilton,
  44. Markus R. Hoffmann,
  45. Sabrina Hong,
  46. Trent Huang,
  47. Ashley Huff,
  48. Justin Iveland,
  49. Evan Jeffrey,
  50. Julian Kelly,
  51. Seon Kim,
  52. Paul V. Klimov,
  53. Fedor Kostritsa,
  54. John Mark Kreikebaum,
  55. David Landhuis,
  56. Pavel Laptev,
  57. Lily Laws,
  58. Kenny Lee,
  59. Brian J. Lester,
  60. Alexander T. Lill,
  61. Wayne Liu,
  62. Aditya Locharla,
  63. Erik Lucero,
  64. Steven Martin,
  65. Matt McEwen,
  66. Anthony Megrant,
  67. Xiao Mi,
  68. Kevin C. Miao,
  69. Shirin Montazeri,
  70. Alexis Morvan,
  71. Matthew Neeley,
  72. Charles Neill,
  73. Ani Nersisyan,
  74. Jiun How Ng,
  75. Anthony Nguyen,
  76. Murray Nguyen,
  77. Rebecca Potter,
  78. Chris Quintana,
  79. Charles Rocque,
  80. Pedram Roushan,
  81. Kannan Sankaragomathi,
  82. Kevin J. Satzinger,
  83. Christopher Schuster,
  84. Michael J. Shearn,
  85. Aaron Shorter,
  86. Vladimir Shvarts,
  87. Jindra Skruzny,
  88. W. Clarke Smith,
  89. George Sterling,
  90. Marco Szalay,
  91. Douglas Thor,
  92. Alfredo Torres,
  93. Bryan W. K. Woo,
  94. Z. Jamie Yao,
  95. Ping Yeh,
  96. Juhwan Yoo,
  97. Grayson Young,
  98. Ningfeng Zhu,
  99. Nicholas Zobrist,
  100. and Daniel Sank
Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed
by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target signal-to-noise ratio in the shortest possible time. However, experiments have shown that when the average resonator photon number exceeds a certain threshold, the qubit is excited out of its computational subspace, which we refer to as a measurement-induced state transition. These transitions degrade readout fidelity, and constitute leakage which precludes further operation of the qubit in, for example, error correction. Here we study these transitions using a transmon qubit by experimentally measuring their dependence on qubit frequency, average photon number, and qubit state, in the regime where the resonator frequency is lower than the qubit frequency. We observe signatures of resonant transitions between levels in the coupled qubit-resonator system that exhibit noisy behavior when measured repeatedly in time. We provide a semi-classical model of these transitions based on the rotating wave approximation and use it to predict the onset of state transitions in our experiments. Our results suggest the transmon is excited to levels near the top of its cosine potential following a state transition, where the charge dispersion of higher transmon levels explains the observed noisy behavior of state transitions. Moreover, occupation in these higher energy levels poses a major challenge for fast qubit reset.

Readout of a quantum processor with high dynamic range Josephson parametric amplifiers

  1. T. C. White,
  2. Alex Opremcak,
  3. George Sterling,
  4. Alexander Korotkov,
  5. Daniel Sank,
  6. Rajeev Acharya,
  7. Markus Ansmann,
  8. Frank Arute,
  9. Kunal Arya,
  10. Joseph C Bardin,
  11. Andreas Bengtsson,
  12. Alexandre Bourassa,
  13. Jenna Bovaird,
  14. Leon Brill,
  15. Bob B. Buckley,
  16. David A. Buell,
  17. Tim Burger,
  18. Brian Burkett,
  19. Nicholas Bushnell,
  20. Zijun Chen,
  21. Ben Chiaro,
  22. Josh Cogan,
  23. Roberto Collins,
  24. Alexander L. Crook,
  25. Ben Curtin,
  26. Sean Demura,
  27. Andrew Dunsworth,
  28. Catherine Erickson,
  29. Reza Fatemi,
  30. Leslie Flores-Burgos,
  31. Ebrahim Forati,
  32. Brooks Foxen,
  33. William Giang,
  34. Marissa Giustina,
  35. Alejandro Grajales Dau,
  36. Michael C. Hamilton,
  37. Sean D. Harrington,
  38. Jeremy Hilton,
  39. Markus Hoffmann,
  40. Sabrina Hong,
  41. Trent Huang,
  42. Ashley Huff,
  43. Justin Iveland,
  44. Evan Jeffrey,
  45. Mária Kieferová,
  46. Seon Kim,
  47. Paul V. Klimov,
  48. Fedor Kostritsa,
  49. John Mark Kreikebaum,
  50. David Landhuis,
  51. Pavel Laptev,
  52. Lily Laws,
  53. Kenny Lee,
  54. Brian J. Lester,
  55. Alexander Lill,
  56. Wayne Liu,
  57. Aditya Locharla,
  58. Erik Lucero,
  59. Trevor McCourt,
  60. Matt McEwen,
  61. Xiao Mi,
  62. Kevin C. Miao,
  63. Shirin Montazeri,
  64. Alexis Morvan,
  65. Matthew Neeley,
  66. Charles Neill,
  67. Ani Nersisyan,
  68. Jiun How Ng,
  69. Anthony Nguyen,
  70. Murray Nguyen,
  71. Rebecca Potter,
  72. Chris Quintana,
  73. Pedram Roushan,
  74. Kannan Sankaragomathi,
  75. Kevin J. Satzinger,
  76. Christopher Schuster,
  77. Michael J. Shearn,
  78. Aaron Shorter,
  79. Vladimir Shvarts,
  80. Jindra Skruzny,
  81. W. Clarke Smith,
  82. Marco Szalay,
  83. Alfredo Torres,
  84. Bryan Woo,
  85. Z. Jamie Yao,
  86. Ping Yeh,
  87. Juhwan Yoo,
  88. Grayson Young,
  89. Ningfeng Zhu,
  90. Nicholas Zobrist,
  91. Yu Chen,
  92. Anthony Megrant,
  93. Julian Kelly,
  94. and Ofer Naaman
We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the
50 Ω environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimate of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs.

Observation of topological phenomena in a programmable lattice of 1,800 qubits

  1. Andrew D. King,
  2. Juan Carrasquilla,
  3. Isil Ozfidan,
  4. Jack Raymond,
  5. Evgeny Andriyash,
  6. Andrew Berkley,
  7. Mauricio Reis,
  8. Trevor M. Lanting,
  9. Richard Harris,
  10. Gabriel Poulin-Lamarre,
  11. Anatoly Yu. Smirnov,
  12. Christopher Rich,
  13. Fabio Altomare,
  14. Paul Bunyk,
  15. Jed Whittaker,
  16. Loren Swenson,
  17. Emile Hoskinson,
  18. Yuki Sato,
  19. Mark Volkmann,
  20. Eric Ladizinsky,
  21. Mark Johnson,
  22. Jeremy Hilton,
  23. and Mohammad H. Amin
The celebrated work of Berezinskii, Kosterlitz and Thouless in the 1970s revealed exotic phases of matter governed by topological properties of low-dimensional materials such as thin
films of superfluids and superconductors. Key to this phenomenon is the appearance and interaction of vortices and antivortices in an angular degree of freedom—typified by the classical XY model—due to thermal fluctuations. In the 2D Ising model this angular degree of freedom is absent in the classical case, but with the addition of a transverse field it can emerge from the interplay between frustration and quantum fluctuations. Consequently a Kosterlitz-Thouless (KT) phase transition has been predicted in the quantum system by theory and simulation. Here we demonstrate a large-scale quantum simulation of this phenomenon in a network of 1,800 in situ programmable superconducting flux qubits arranged in a fully-frustrated square-octagonal lattice. Essential to the critical behavior, we observe the emergence of a complex order parameter with continuous rotational symmetry, and the onset of quasi-long-range order as the system approaches a critical temperature. We use a simple but previously undemonstrated approach to statistical estimation with an annealing-based quantum processor, performing Monte Carlo sampling in a chain of reverse quantum annealing protocols. Observations are consistent with classical simulations across a range of Hamiltonian parameters. We anticipate that our approach of using a quantum processor as a programmable magnetic lattice will find widespread use in the simulation and development of exotic materials.