Observation and stabilization of photonic Fock states in a hot radio-frequency resonator

  1. Mario F. Gely,
  2. Marios Kounalakis,
  3. Christian Dickel,
  4. Jacob Dalle,
  5. Rémy Vatré,
  6. Brian Baker,
  7. Mark D. Jenkins,
  8. and Gary A. Steele
Detecting weak radio-frequency electromagnetic fields plays a crucial role in wide range of fields, from radio astronomy to nuclear magnetic resonance imaging. In quantum mechanics,
the ultimate limit of a weak field is a single-photon. Detecting and manipulating single-photons at megahertz frequencies presents a challenge as, even at cryogenic temperatures, thermal fluctuations are significant. Here, we use a gigahertz superconducting qubit to directly observe the quantization of a megahertz radio-frequency electromagnetic field. Using the qubit, we achieve quantum control over thermal photons, cooling to the ground-state and stabilizing photonic Fock states. Releasing the resonator from our control, we directly observe its re-thermalization dynamics with the bath with nanosecond resolution. Extending circuit quantum electrodynamics to a new regime, we enable the exploration of thermodynamics at the quantum scale and allow interfacing quantum circuits with megahertz systems such as spin systems or macroscopic mechanical oscillators.