A blueprint for demonstrating quantum supremacy with superconducting qubits

  1. C. Neill,
  2. P. Roushan,
  3. K. Kechedzhi,
  4. S. Boixo,
  5. S. V. Isakov,
  6. V. Smelyanskiy,
  7. R. Barends,
  8. B. Burkett,
  9. Y. Chen,
  10. Z. Chen,
  11. B. Chiaro,
  12. A. Dunsworth,
  13. A. Fowler,
  14. B. Foxen,
  15. R. Graff,
  16. E. Jeffrey,
  17. J. Kelly,
  18. E. Lucero,
  19. A. Megrant,
  20. J. Mutus,
  21. M. Neeley,
  22. C. Quintana,
  23. D. Sank,
  24. A. Vainsencher,
  25. J. Wenner,
  26. T. C. White,
  27. H. Neven,
  28. and J.M. Martinis
Fundamental questions in chemistry and physics may never be answered due to the exponential complexity of the underlying quantum phenomena. A desire to overcome this challenge has sparked
a new industry of quantum technologies with the promise that engineered quantum systems can address these hard problems. A key step towards demonstrating such a system will be performing a computation beyond the capabilities of any classical computer, achieving so-called quantum supremacy. Here, using 9 superconducting qubits, we demonstrate an immediate path towards quantum supremacy. By individually tuning the qubit parameters, we are able to generate thousands of unique Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert-space. As the number of qubits in the algorithm is varied, the system continues to explore the exponentially growing number of states. Combining these large datasets with techniques from machine learning allows us to construct a model which accurately predicts the measured probabilities. We demonstrate an application of these algorithms by systematically increasing the disorder and observing a transition from delocalized states to localized states. By extending these results to a system of 50 qubits, we hope to address scientific questions that are beyond the capabilities of any classical computer.

Scalable Quantum Simulation of Molecular Energies

  1. P. J. J. O'Malley,
  2. R. Babbush,
  3. I. D. Kivlichan,
  4. J. Romero,
  5. J. R. McClean,
  6. R. Barends,
  7. J. Kelly,
  8. P. Roushan,
  9. A. Tranter,
  10. N. Ding,
  11. B. Campbell,
  12. Y. Chen,
  13. Z. Chen,
  14. B. Chiaro,
  15. A. Dunsworth,
  16. A. G. Fowler,
  17. E. Jeffrey,
  18. A. Megrant,
  19. J. Y. Mutus,
  20. C. Neill,
  21. C. Quintana,
  22. D. Sank,
  23. A. Vainsencher,
  24. J. Wenner,
  25. T. C. White,
  26. P. V. Coveney,
  27. P. J. Love,
  28. H. Neven,
  29. A. Aspuru-Guzik,
  30. and J.M. Martinis
We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits
to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Next, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors, inspiring hope that quantum simulation of classically intractable molecules may be viable in the near future.

Observation of topological transitions in interacting quantum circuits

  1. P. Roushan,
  2. C. Neill,
  3. Yu Chen,
  4. M. Kolodrubetz,
  5. C. Quintana,
  6. N. Leung,
  7. M. Fang,
  8. R. Barends,
  9. B. Campbell,
  10. Z. Chen,
  11. B. Chiaro,
  12. A. Dunsworth,
  13. E. Jeffrey,
  14. J. Kelly,
  15. A. Megrant,
  16. J. Mutus,
  17. P. O'Malley,
  18. D. Sank,
  19. A. Vainsencher,
  20. J. Wenner,
  21. T. White,
  22. A. Polkovnikov,
  23. A. N. Cleland,
  24. and J.M. Martinis
The discovery of topological phases in condensed matter systems has changed the modern conception of phases of matter. The global nature of topological ordering makes these phases robust
and hence promising for applications. However, the non-locality of this ordering makes direct experimental studies an outstanding challenge, even in the simplest model topological systems, and interactions among the constituent particles adds to this challenge. Here we demonstrate a novel dynamical method to explore topological phases in both interacting and non-interacting systems, by employing the exquisite control afforded by state-of-the-art superconducting quantum circuits. We utilize this method to experimentally explore the well-known Haldane model of topological phase transitions by directly measuring the topological invariants of the system. We construct the topological phase diagram of this model and visualize the microscopic evolution of states across the phase transition, tasks whose experimental realizations have remained elusive. Furthermore, we developed a new qubit architecture that allows simultaneous control over every term in a two-qubit Hamiltonian, with which we extend our studies to an interacting Hamiltonian and discover the emergence of an interaction-induced topological phase. Our implementation, involving the measurement of both global and local textures of quantum systems, is close to the original idea of quantum simulation as envisioned by R. Feynman, where a controllable quantum system is used to investigate otherwise inaccessible quantum phenomena. This approach demonstrates the potential of superconducting qubits for quantum simulation and establishes a powerful platform for the study of topological phases in quantum systems.

Fast Scalable State Measurement with Superconducting Qubits

  1. Daniel Sank,
  2. Evan Jeffrey,
  3. J. Y. Mutus,
  4. T. C. White,
  5. J. Kelly,
  6. R. Barends,
  7. Y. Chen,
  8. Z. Chen,
  9. B. Chiaro,
  10. A. Dunsworth,
  11. A. Megrant,
  12. P. J. J. O'Malley,
  13. C. Neill,
  14. P. Roushan,
  15. A. Vainsencher,
  16. J. Wenner,
  17. A. N. Cleland,
  18. and J.M. Martinis
Progress in superconducting qubit experiments with greater numbers of qubits or advanced techniques such as feedback requires faster and more accurate state measurement. We have designed
a multiplexed measurement system with a bandpass filter that allows fast measurement without increasing environmental damping of the qubits. We use this to demonstrate simultaneous measurement of four qubits on a single superconducting integrated circuit, the fastest of which can be measured to 99.8% accuracy in 140ns. This accuracy and speed is suitable for advanced multi-qubit experiments including surface code error correction.