Modeling Phonon-mediated Quasiparticle Poisoning in Superconducting Qubit Arrays

  1. Eric Yelton,
  2. Clayton P. Larson,
  3. Vito Iaia,
  4. Kenneth Dodge,
  5. Guglielmo La Magna,
  6. Paul G. Baity,
  7. Ivan V. Pechenezhskiy,
  8. Robert McDermott,
  9. Noah Kurinsky,
  10. Gianluigi Catelani,
  11. and Britton L. T. Plourde
Correlated errors caused by ionizing radiation impacting superconducting qubit chips are problematic for quantum error correction. Such impacts generate quasiparticle (QP) excitations
in the qubit electrodes, which temporarily reduce qubit coherence significantly. The many energetic phonons produced by a particle impact travel efficiently throughout the device substrate and generate quasiparticles with high probability, thus causing errors on a large fraction of the qubits in an array simultaneously. We describe a comprehensive strategy for the numerical simulation of the phonon and quasiparticle dynamics in the aftermath of an impact. We compare the simulations with experimental measurements of phonon-mediated QP poisoning and demonstrate that our modeling captures the spatial and temporal footprint of the QP poisoning for various configurations of phonon downconversion structures. We thus present a path forward for the operation of superconducting quantum processors in the presence of ionizing radiation.

Quasiparticle dynamics in a superconducting qubit irradiated by a localized infrared source

  1. Rodrigo Benevides,
  2. Maxwell Drimmer,
  3. Giacomo Bisson,
  4. Francesco Adinolfi,
  5. Uwe von Lüpke,
  6. Hugo Michiel Doeleman,
  7. Gianluigi Catelani,
  8. and Yiwen Chu
A known source of decoherence in superconducting qubits is the presence of broken Cooper pairs, or quasiparticles. These can be generated by high-energy radiation, either present in
the environment or purposefully introduced, as in the case of some hybrid quantum devices. Here, we systematically study the properties of a transmon qubit under illumination by focused infrared radiation with various powers, durations, and spatial locations. Despite the high energy of incident photons, our observations agree well with a model of low-energy quasiparticle dynamics dominated by trapping. This technique can be used for understanding and potentially mitigating the effects of high-energy radiation on superconducting circuits with a variety of geometries and materials.

Observation of Josephson Harmonics in Tunnel Junctions

  1. Dennis Willsch,
  2. Dennis Rieger,
  3. Patrick Winkel,
  4. Madita Willsch,
  5. Christian Dickel,
  6. Jonas Krause,
  7. Yoichi Ando,
  8. Raphaël Lescanne,
  9. Zaki Leghtas,
  10. Nicholas T. Bronn,
  11. Pratiti Deb,
  12. Olivia Lanes,
  13. Zlatko K. Minev,
  14. Benedikt Dennig,
  15. Simon Geisert,
  16. Simon Günzler,
  17. Sören Ihssen,
  18. Patrick Paluch,
  19. Thomas Reisinger,
  20. Roudy Hanna,
  21. Jin Hee Bae,
  22. Peter Schüffelgen,
  23. Detlev Grützmacher,
  24. Luiza Buimaga-Iarinca,
  25. Cristian Morari,
  26. Wolfgang Wernsdorfer,
  27. David P. DiVincenzo,
  28. Kristel Michielsen,
  29. Gianluigi Catelani,
  30. and Ioan M. Pop
An accurate understanding of the Josephson effect is the keystone of quantum information processing with superconducting hardware. Here we show that the celebrated sinφ current-phase
relation (CφR) of Josephson junctions (JJs) fails to fully describe the energy spectra of transmon artificial atoms across various samples and laboratories. While the microscopic theory of JJs contains higher harmonics in the CφR, these have generally been assumed to give insignificant corrections for tunnel JJs, due to the low transparency of the conduction channels. However, this assumption might not be justified given the disordered nature of the commonly used AlOx tunnel barriers. Indeed, a mesoscopic model of tunneling through an inhomogeneous AlOx barrier predicts contributions from higher Josephson harmonics of several %. By including these in the transmon Hamiltonian, we obtain orders of magnitude better agreement between the computed and measured energy spectra. The measurement of Josephson harmonics in the CφR of standard tunnel junctions prompts a reevaluation of current models for superconducting hardware and it offers a highly sensitive probe towards optimizing tunnel barrier uniformity.

Soliton versus single photon quantum dynamics in arrays of superconducting qubits

  1. Ben Blain,
  2. Giampiero Marchegiani,
  3. Juan Polo,
  4. Gianluigi Catelani,
  5. and Luigi Amico
Superconducting circuits constitute a promising platform for future implementation of quantum processors and simulators. Arrays of capacitively coupled transmon qubits naturally implement
the Bose-Hubbard model with attractive on-site interaction. The spectrum of such many-body systems is characterised by low-energy localised states defining the lattice analog of bright solitons. Here, we demonstrate that these bright solitons can be pinned in the system, and we find that a soliton moves while maintaining its shape. Its velocity obeys a scaling law in terms of the combined interaction and number of constituent bosons. In contrast, the source-to-drain transport of photons through the array occurs through extended states that have higher energy compared to the bright soliton. For weak coupling between the source/drain and the array, the populations of the source and drain oscillate in time, with the chain remaining nearly unpopulated at all times. Such a phenomenon is found to be parity dependent. Implications of our results for the actual experimental realisations are discussed.

Quasiparticles in superconducting qubits with asymmetric junctions

  1. Giampiero Marchegiani,
  2. Luigi Amico,
  3. and Gianluigi Catelani
Designing the spatial profile of the superconducting gap – gap engineering – has long been recognized as an effective way of controlling quasiparticles in superconducting
devices. In aluminum films, their thickness modulates the gap; therefore, standard fabrication of Al/AlOx/Al Josephson junctions, which relies on overlapping a thicker film on top of a thinner one, always results in gap-engineered devices. Here we reconsider quasiparticle effects in superconducting qubits to explicitly account for the unavoidable asymmetry in the gap on the two sides of a Josephson junction. We find that different regimes can be encountered in which the quasiparticles have either similar densities in the two junction leads, or are largely confined to the lower-gap lead. Qualitatively, for similar densities the qubit’s excited state population is lower but its relaxation rate higher than when the quasiparticles are confined; therefore, there is a potential trade-off between two desirable properties in a qubit.

A quantum Szilard engine for two-level systems coupled to a qubit

  1. Martin Spiecker,
  2. Patrick Paluch,
  3. Niv Drucker,
  4. Shlomi Matityahu,
  5. Daria Gusenkova,
  6. Nicolas Gosling,
  7. Simon Günzler,
  8. Dennis Rieger,
  9. Ivan Takmakov,
  10. Francesco Valenti,
  11. Patrick Winkel,
  12. Richard Gebauer,
  13. Oliver Sander,
  14. Gianluigi Catelani,
  15. Alexander Shnirman,
  16. Alexey V. Ustinov,
  17. Wolfgang Wernsdorfer,
  18. Yonatan Cohen,
  19. and Ioan M. Pop
The innate complexity of solid state physics exposes superconducting quantum circuits to interactions with uncontrolled degrees of freedom degrading their coherence. By using a simple
stabilization sequence we show that a superconducting fluxonium qubit is coupled to a two-level system (TLS) environment of unknown origin, with a relatively long energy relaxation time exceeding 50ms. Implementing a quantum Szilard engine with an active feedback control loop allows us to decide whether the qubit heats or cools its TLS environment. The TLSs can be cooled down resulting in a four times lower qubit population, or they can be heated to manifest themselves as a negative temperature environment corresponding to a qubit population of ∼80%. We show that the TLSs and the qubit are each other’s dominant loss mechanism and that the qubit relaxation is independent of the TLS populations. Understanding and mitigating TLS environments is therefore not only crucial to improve qubit lifetimes but also to avoid non-Markovian qubit dynamics.

Engineering superconducting qubits to reduce quasiparticles and charge noise

  1. Xianchuang Pan,
  2. Haolan Yuan,
  3. Yuxuan Zhou,
  4. Libo Zhang,
  5. Jian Li,
  6. Song Liu,
  7. Zhi Hao Jiang,
  8. Gianluigi Catelani,
  9. Ling Hu,
  10. and Fei Yan
In any physical realization of a qubit, identifying, quantifying, and suppressing mechanisms of decoherence are important steps towards the goal of engineering a universal quantum computeror a quantum simulator. Superconducting circuits based on Josephson junctions offer flexibility in qubit design; however, their performance is adversely affected by quasiparticles (broken Cooper pairs) whose density, as observed in various systems, is considerably higher than that expected in thermal equilibrium. A full understanding of the generation mechanism and a mitigation strategy that is compatible with scalable, high-coherence devices are therefore highly desirable. Here we experimentally demonstrate how to control quasiparticle generation by downsizing the qubit structure, capping it with a metallic cover, and equipping it with suitable quasiparticle traps. We achieve record low charge-parity switching rate (<1Hz) in our aluminium devices. At the same time, the devices display improved stability with respect to discrete charging events. Our findings support the hypothesis that the generation of quasiparticles is dominated by the breaking of Cooper pairs at the junction, as a result of photon absorption mediated by the antenna-like qubit structure. We thus demonstrate a convenient approach to shape the electromagnetic environment of superconducting circuits in the sub-terahertz regime, inhibiting decoherence from quasiparticle poisoning.[/expand]

Using materials for quasiparticle engineering

  1. Gianluigi Catelani,
  2. and Jukka P. Pekola
The fundamental excitations in superconductors – Bogoliubov quasiparticles – can be either a resource or a liability in superconducting devices: they are what enables photon
detection in microwave kinetic inductance detectors, but they are a source of errors in qubits and electron pumps. To improve operation of the latter devices, ways to mitigate quasiparticle effects have been devised; in particular, combining different materials quasiparticles can be trapped where they do no harm and their generation can be impeded. We review recent developments in these mitigation efforts and discuss open questions.

Charge dynamics in quantum-circuit refrigeration: thermalization and microwave gain

  1. Hao Hsu,
  2. Matti Silveri,
  3. Vasilii Sevriuk,
  4. Mikko Möttönen,
  5. and Gianluigi Catelani
Previous studies of photon-assisted tunneling through normal-metal-insulator-superconductor junctions have exhibited potential for providing a convenient tool to control the dissipation
of quantum-electric circuits in-situ. However, the current literature on such a quantum-circuit refrigerator (QCR) does not present a detailed description for the charge dynamics of the tunneling processes or the phase coherence of the open quantum system. Here we derive a master equation describing both quantum-electric and charge degrees of freedom, and discover that typical experimental parameters of low temperature and yet lower charging energy yield a separation of time scales for the charge and quantum dynamics. Consequently, the minor effect of the different charge states can be taken into account by averaging over the charge distribution. We also consider applying an ac voltage to the tunnel junction, which enables control of the decay rate of a superconducting qubit over four orders of magnitude by changing the drive amplitude; we find an order-of-magnitude drop in the qubit excitation in 40 ns and a residual reset infidelity below 10−4. Furthermore, for the normal island we consider the case of charging energy and single-particle level spacing large compared to the superconducting gap, i.e., a quantum dot. Although the decay rates arising from such a dot QCR appear low for use in qubit reset, the device can provide effective negative damping (gain) to the coupled microwave resonator. The Fano factor of such a millikelvin microwave source may be smaller than unity, with the latter value being reached close to the maximum attainable power.

Reducing the impact of radioactivity on quantum circuits in a deep-underground facility

  1. Laura Cardani,
  2. Francesco Valenti,
  3. Nicola Casali,
  4. Gianluigi Catelani,
  5. Thibault Charpentier,
  6. Massimiliano Clemenza,
  7. Ivan Colantoni,
  8. Angelo Cruciani,
  9. Luca Gironi,
  10. Lukas Grünhaupt,
  11. Daria Gusenkova,
  12. Fabio Henriques,
  13. Marc Lagoin,
  14. Maria Martinez,
  15. Giorgio Pettinari,
  16. Claudia Rusconi,
  17. Oliver Sander,
  18. Alexey V. Ustinov,
  19. Marc Weber,
  20. Wolfgang Wernsdorfer,
  21. Marco Vignati,
  22. Stefano Pirro,
  23. and Ioan M. Pop
As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum information
processing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor fifty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware.