Continuous monitoring of a trapped, superconducting spin

  1. M. Hays,
  2. V. Fatemi,
  3. K. Serniak,
  4. D. Bouman,
  5. S. Diamond,
  6. G. de Lange,
  7. P. Krogstrup,
  8. J. Nygård,
  9. A. Geresdi,
  10. and M. H. Devoret
Readout and control of fermionic spins in solid-state systems are key primitives of quantum information processing and microscopic magnetic sensing. The highly localized nature of most
fermionic spins decouples them from parasitic degrees of freedom, but makes long-range interoperability difficult to achieve. In light of this challenge, an active effort is underway to integrate fermionic spins with circuit quantum electrodynamics (cQED), which was originally developed in the field of superconducting qubits to achieve single-shot, quantum-non-demolition (QND) measurements and long-range couplings. However, single-shot readout of an individual spin with cQED has remained elusive due to the difficulty of coupling a resonator to a particle trapped by a charge-confining potential. Here we demonstrate the first single-shot, cQED readout of a single spin. In our novel implementation, the spin is that of an individual superconducting quasiparticle trapped in the Andreev levels of a semiconductor nanowire Josephson element. Due to a spin-orbit interaction inside the nanowire, this „superconducting spin“ directly determines the flow of supercurrent through the element. We harnessed this spin-dependent supercurrent to achieve both a zero-field spin splitting as well as a long-range interaction between the quasiparticle and a superconducting microwave resonator. Owing to the strength of this interaction in our device, measuring the resultant spin-dependent resonator frequency yielded QND spin readout with 92% fidelity in 1.9 μs and allowed us to monitor the quasiparticle’s spin in real time. These results pave the way for new „fermionic cQED“ devices: superconducting spin qubits operating at zero magnetic field, devices in which the spin has enhanced governance over the circuit, and time-domain measurements of Majorana modes.

Hot non-equilibrium quasiparticles in transmon qubits

  1. K. Serniak,
  2. M. Hays,
  3. G. de Lange,
  4. S. Diamond,
  5. S. Shankar,
  6. L. D. Burkhart,
  7. L. Frunzio,
  8. M. Houzet,
  9. and M. H. Devoret
Non-equilibrium quasiparticle excitations degrade the performance of a variety of superconducting circuits. Understanding the energy distribution of these quasiparticles will yield
insight into their generation mechanisms, the limitations they impose on superconducting devices, and how to efficiently mitigate quasiparticle-induced qubit decoherence. To probe this energy distribution, we directly correlate qubit transitions with charge-parity switches in an offset-charge-sensitive transmon qubit, and find that quasiparticle-induced excitation events are the dominant mechanism behind the residual excited-state population in our samples. The observed quasiparticle distribution would limit T1 to ≈200 μs, which indicates that quasiparticle loss in our devices is on equal footing with all other loss mechanisms. Furthermore, the measured rate of quasiparticle-induced excitation events is greater than that of relaxation events, which signifies that the quasiparticles are more energetic than would be predicted from a thermal distribution describing their apparent density.

Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements

  1. G. de Lange,
  2. B. van Heck,
  3. A. Bruno,
  4. D. J. van Woerkom,
  5. A. Geresdi,
  6. S. R. Plissard,
  7. E. P. A. M. Bakkers,
  8. A. R. Akhmerov,
  9. and L. DiCarlo
We report the realization of quantum microwave circuits using hybrid superconductor-semiconductor Josephson elements comprised of InAs nanowires contacted by NbTiN. Capacitively-shunted
single elements behave as transmon qubits with electrically tunable transition frequencies. Two-element circuits also exhibit transmon-like behavior near zero applied flux, but behave as flux qubits at half the flux quantum, where non-sinusoidal current-phase relations in the elements produce a double-well Josephson potential. These hybrid Josephson elements are promising for applications requiring microwave superconducting circuits operating in magnetic field.

Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates

  1. A. Bruno,
  2. G. de Lange,
  3. S. Asaad,
  4. K. L. van der Enden,
  5. N. K. Langford,
  6. and L. DiCarlo
We present microwave-frequency NbTiN resonators on silicon, systematically achieving internal quality factors above 1 M in the quantum regime. We use two techniques to reduce losses
associated with two-level systems: an additional substrate surface treatment prior to NbTiN deposition to optimize the metal-substrate interface, and deep reactive-ion etching of the substrate to displace the substrate-vacuum interfaces away from high electric fields. The temperature and power dependence of resonator behavior indicate that two-level systems still contribute significantly to energy dissipation, suggesting that more interface optimization could further improve performance.

Entanglement genesis by ancilla-based parity measurement in 2D circuit QED

  1. O.-P. Saira,
  2. J. P. Groen,
  3. J. Cramer,
  4. M. Meretska,
  5. G. de Lange,
  6. and L. DiCarlo
We present an indirect two-qubit parity meter in planar circuit quantum electrodynamics, realized by discrete interaction with an ancilla and a subsequent projective ancilla measurement
with a dedicated, dispersively coupled resonator. Quantum process tomography and successful entanglement by measurement demonstrate that the meter is intrinsically quantum non-demolition. Separate interaction and measurement steps allow commencing subsequent data qubit operations in parallel with ancilla measurement, offering time savings over continuous schemes.

Reversing quantum trajectories with analog feedback

  1. G. de Lange,
  2. D. Ristè,
  3. M. J. Tiggelman,
  4. C. Eichler,
  5. L. Tornberg,
  6. G. Johansson,
  7. A. Wallraff,
  8. R. N. Schouten,
  9. and L. DiCarlo
We demonstrate the active suppression of transmon qubit dephasing induced by dispersive measurement, using parametric amplification and analog feedback. By real-time processing of the
homodyne record, the feedback controller reverts the stochastic quantum phase kick imparted by the measurement on the qubit. The feedback operation matches a model of quantum trajectories with measurement efficiency η~≈0.5, consistent with the result obtained by postselection. We overcome the bandwidth limitations of the amplification chain by numerically optimizing the signal processing in the feedback loop and provide a theoretical model explaining the optimization result.

Deterministic entanglement of superconducting qubits by parity measurement and feedback

  1. D. Ristè,
  2. M. Dukalski,
  3. C. A. Watson,
  4. G. de Lange,
  5. M. J. Tiggelman,
  6. Ya. M. Blanter,
  7. K. W. Lehnert,
  8. R. N. Schouten,
  9. and L. DiCarlo
The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a
classical state, destroying any initial quantum superposition and any entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects a register of quantum bits (qubits) to a state with an even or odd total number of excitations. Crucially, a parity meter must discern the two parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting, and superconducting qubits, realizing a parity meter creating entanglement for both even and odd measurement results has remained an outstanding challenge. We realize a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a 3D circuit quantum electrodynamics (cQED) architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 77% concurrence. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66% fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.