Evolution of Nanowire Transmons and Their Quantum Coherence in Magnetic Field

  1. F. Luthi,
  2. T. Stavenga,
  3. O. W. Enzing,
  4. A. Bruno,
  5. C. Dickel,
  6. N. K. Langford,
  7. M. A. Rol,
  8. T. S. Jespersen,
  9. J. Nygard,
  10. P. Krogstrup,
  11. and L. DiCarlo
We present an experimental study of nanowire transmons at zero and applied in-plane magnetic field. With Josephson non-linearities provided by the nanowires, our qubits operate at higher
magnetic fields than standard transmons. Nanowire transmons exhibit coherence up to 70 mT, where the induced superconducting gap in the nanowire closes. We demonstrate that on-chip charge noise coupling to the Josephson energy plays a dominant role in the qubit dephasing. This takes the form of strongly-coupled two-level systems switching on 100 ms timescales and a more weakly coupled background producing 1/f noise. Several observations, including the field dependence of qubit energy relaxation and dephasing, are not fully understood, inviting further experimental investigation and theory. Using nanowires with a thinner superconducting shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation.

Restless Tuneup of High-Fidelity Qubit Gates

  1. M. A. Rol,
  2. C. C. Bultink,
  3. T. E. O'Brien,
  4. S.R. de Jong,
  5. L.S. Theis,
  6. X. Fu,
  7. F. Luthi,
  8. R.F.L. Vermeulen,
  9. J. C. de Sterke,
  10. A. Bruno,
  11. D. Deurloo,
  12. R. N. Schouten,
  13. F.K. Wilhelm,
  14. and L. DiCarlo
We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing
a cost function for Nelder-Mead optimization from real-time correlation of non-demolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate set tomography. The adjustable sensitivity of the cost function allows detecting fractional changes in gate error with nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling

  1. N. K. Langford,
  2. R. Sagastizabal,
  3. M. Kounalakis,
  4. C. Dickel,
  5. A. Bruno,
  6. F. Luthi,
  7. D. J. Thoen,
  8. A. Endo,
  9. and L. DiCarlo
The quantum Rabi model describing the fundamental interaction between light and matter is a cornerstone of quantum physics. It predicts exotic phenomena like quantum phase transitions
and ground-state entanglement in the ultrastrong-coupling (USC) regime, where coupling strengths are comparable to subsystem energies. Despite progress in many experimental platforms, the few experiments reaching USC have been limited to spectroscopy: demonstrating USC dynamics remains an outstanding challenge. Here, we employ a circuit QED chip with moderate coupling between a resonator and transmon qubit to realise accurate digital quantum simulation of USC dynamics. We advance the state of the art in solid-state digital quantum simulation by using up to 90 second-order Trotter steps and probing both subsystems in a combined Hilbert space dimension ∼80, demonstrating the Schr\“odinger-cat like entanglement and build-up of large photon numbers characteristic of deep USC. This work opens the door to exploring extreme USC regimes, quantum phase transitions and many-body effects in the Dicke model.