Observation of collapse and revival in a superconducting atomic frequency comb

  1. E.S. Redchenko,
  2. M. Zens,
  3. M. Zemlicka,
  4. M. Peruzzo,
  5. F. Hassani,
  6. H.S. Dhar,
  7. D.O. Krimer,
  8. S. Rotter,
  9. and J. M. Fink
Recent advancements in superconducting circuits have enabled the experimental study of collective behavior of precisely controlled intermediate-scale ensembles of qubits. In this work,
we demonstrate an atomic frequency comb formed by individual artificial atoms strongly coupled to a single resonator mode. We observe periodic microwave pulses that originate from a single coherent excitation dynamically interacting with the multi-qubit ensemble. We show that this revival dynamics emerges as a consequence of the constructive and periodic rephasing of the five superconducting qubits forming the vacuum Rabi split comb. In the future, similar devices could be used as a memory with in-situ tunable storage time or as an on-chip periodic pulse generator with non-classical photon statistics.

Emergent macroscopic bistability induced by a single superconducting qubit

  1. R. Sett,
  2. F. Hassani,
  3. D. Phan,
  4. S. Barzanjeh,
  5. A. Vukics,
  6. and J. M. Fink
The photon blockade breakdown in a continuously driven cavity QED system has been proposed as a prime example for a first-order driven-dissipative quantum phase transition. But the
predicted scaling from a microscopic system – dominated by quantum fluctuations – to a macroscopic one – characterized by stable phases – and the associated exponents and phase diagram have not been observed so far. In this work we couple a single transmon qubit with a fixed coupling strength g to an in-situ bandwidth κ tuneable superconducting cavity to controllably approach this thermodynamic limit. Even though the system remains microscopic, we observe its behavior to become more and more macroscopic as a function of g/κ. For the highest realized g/κ≈287 the system switches with a characteristic dwell time as high as 6 seconds between a bright coherent state with ≈8×103 intra-cavity photons and the vacuum state with equal probability. This exceeds the microscopic time scales by six orders of magnitude and approaches the near perfect hysteresis expected between two macroscopic attractors in the thermodynamic limit. These findings and interpretation are qualitatively supported by semi-classical theory and large-scale Quantum-Jump Monte Carlo simulations. Besides shedding more light on driven-dissipative physics in the limit of strong light-matter coupling, this system might also find applications in quantum sensing and metrology.

Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses

  1. M. Zemlicka,
  2. E. Redchenko,
  3. M. Peruzzo,
  4. F. Hassani,
  5. A. Trioni,
  6. S. Barzanjeh,
  7. and J. M. Fink
State-of-the-art transmon qubits rely on large capacitors which systematically improves their coherence due to reduced surface loss participation. However, this approach increases both
the footprint and the parasitic cross-coupling and is ultimately limited by radiation losses – a potential roadblock for scaling up quantum processors to millions of qubits. In this work we present transmon qubits with sizes as low as 36×39μm2 with ≳100\,nm wide vacuum gap capacitors that are micro-machined from commercial silicon-on-insulator wafers and shadow evaporated with aluminum. After the release in HF vapor we achieve a vacuum participation ratio up to 99.6\% in an in-plane design that is compatible with standard coplanar circuits. Qubit relaxation time measurements for small gaps with high vacuum electric fields of up to 22\,V/m reveal a double exponential decay indicating comparably strong coupling to long-lived two-level-systems (TLS). %We also show that the fast ‚initial‘ and slow ‚residual‘ decay strongly correlates with the measured sub-single-photon and high-drive-power quality factors of lumped element vacuum gap resonators, respectively. The exceptionally high selectivity of >20\,dB to the superconductor-vacuum surface allows to precisely back out the sub-single-photon dielectric loss tangent of aluminum oxide exposed to ambient conditions of tanδ=1.5×10−4 for a thickness of 3\,nm. %assuming 3\,nm thick. %the widely used aluminum oxide exposed to ambient conditions. In terms of future scaling potential we achieve a qubit quality factor by footprint area of 20μs−2, which is on par with the highest T1 devices relying on larger geometries and expected to improve substantially for lower loss superconductors like NbTiN, TiN or Ta.

Surpassing the resistance quantum with a geometric superinductor

  1. M. Peruzzo,
  2. A. Trioni,
  3. F. Hassani,
  4. M. Zemlicka,
  5. and J. M. Fink
The superconducting circuit community has recently discovered the promising potential of superinductors. These circuit elements have a characteristic impedance exceeding the resistance
quantum RQ≈6.45 kΩ which leads to a suppression of ground state charge fluctuations. Applications include the realization of hardware protected qubits for fault tolerant quantum computing, improved coupling to small dipole moment objects and defining a new quantum metrology standard for the ampere. In this work we refute the widespread notion that superinductors can only be implemented based on kinetic inductance, i.e. using disordered superconductors or Josephson junction arrays. We present modeling, fabrication and characterization of 104 planar aluminum coil resonators with a characteristic impedance up to 30.9 kΩ at 5.6 GHz and a capacitance down to ≤1 fF, with low-loss and a power handling reaching 108 intra-cavity photons. Geometric superinductors are free of uncontrolled tunneling events and offer high reproducibility, linearity and the ability to couple magnetically – properties that significantly broaden the scope of future quantum circuits.