Atomic layer deposition of titanium nitride for quantum circuits

  1. A. Shearrow,
  2. G. Koolstra,
  3. S. J. Whiteley,
  4. N. Earnest,
  5. P. S. Barry,
  6. F. J. Heremans,
  7. D. D. Awschalom,
  8. E. Shirokoff,
  9. and D.I. Schuster
Superconducting thin films with high intrinsic kinetic inductance are of great importance for photon detectors, achieving strong coupling in hybrid systems, and protected qubits. We
report on the performance of titanium nitride resonators, patterned on thin films (9-110 nm) grown by atomic layer deposition, with sheet inductances of up to 234 pH/square. For films thicker than 14 nm, quality factors measured in the quantum regime range from 0.4 to 1.0 million and are likely limited by dielectric two-level systems. Additionally, we show characteristic impedances up to 28 kOhm, with no significant degradation of the internal quality factor as the impedance increases. These high impedances correspond to an increased single photon coupling strength of 24 times compared to a 50 Ohm resonator, transformative for hybrid quantum systems and quantum sensing.

Violating Bell’s inequality with remotely-connected superconducting qubits

  1. Y. P. Zhong,
  2. H.-S. Chang,
  3. K. J. Satzinger,
  4. M.-H. Chou,
  5. A. Bienfait,
  6. C. R. Conner,
  7. É. Dumur,
  8. J. Grebel,
  9. G. A. Peairs,
  10. R. G. Povey,
  11. D.I. Schuster,
  12. and A. N. Cleland
Quantum communication relies on the efficient generation of entanglement between remote quantum nodes, due to entanglement’s key role in achieving and verifying secure communications.
Remote entanglement has been realized using a number of different probabilistic schemes, but deterministic remote entanglement has only recently been demonstrated, using a variety of superconducting circuit approaches. However, the deterministic violation of a Bell inequality, a strong measure of quantum correlation, has not to date been demonstrated in a superconducting quantum communication architecture, in part because achieving sufficiently strong correlation requires fast and accurate control of the emission and capture of the entangling photons. Here we present a simple and scalable architecture for achieving this benchmark result in a superconducting system.

Coherence properties of the 0-π qubit

  1. Peter Groszkowski,
  2. A. Di Paolo,
  3. A. L. Grimsmo,
  4. A. Blais,
  5. D.I. Schuster,
  6. A. A. Houck,
  7. and Jens Koch
Superconducting circuits rank among the most interesting architectures for the implementation of quantum information processing devices. The recently proposed 0-π qubit [Brooks et
al., Phys. Rev. A 87, 52306 (2013)] promises increased protection from spontaneous relaxation and dephasing. In practice, this ideal behavior is only realized if the parameter dispersion among nominally identical circuit elements vanishes. In this paper we present a theoretical study of the more realistic scenario of slight variations in circuit elements. We discuss how the coupling to a spurious, low-energy mode affects the coherence properties of the 0-π device, investigate the relevant decoherence channels, and present estimates for achievable coherence times in multiple parameter regimes.

Random access quantum information processors

  1. R. K. Naik,
  2. N. Leung,
  3. S. Chakram,
  4. P. Groszkowski,
  5. Y. Lu,
  6. N. Earnest,
  7. D. C. McKay,
  8. Jens Koch,
  9. and D.I. Schuster
Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access — the ability of arbitrary qubit pairs to interact directly. Here,
we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-bit quantum memory, with a single transmon serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. The memory bits are superpositions of vacuum and single-photon states, controlled by a single superconducting transmon coupled to the edge of the array. We selectively stimulate single-photon vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency, producing sidebands resonant with the modes. Utilizing these oscillations for state transfer, we perform a universal set of single- and two-qubit gates between arbitrary pairs of modes, using only the charge and flux bias of the transmon. Further, we prepare multimode entangled Bell and GHZ states of arbitrary modes. The fast and flexible control, achieved with efficient use of cryogenic resources and control electronics, in a scalable architecture compatible with state-of-the-art quantum memories is promising for quantum computation and simulation.

Coupling an ensemble of electrons on superfluid helium to a superconducting circuit

  1. Ge Yang,
  2. A. Fragner,
  3. G. Koolstra,
  4. L. Ocola,
  5. D.A. Czaplewski,
  6. R. J. Schoelkopf,
  7. and D.I. Schuster
The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum
computer. Circuit quantum electrodynamics (cQED) allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts that are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be >1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.