Cavity quantum acoustic device in the multimode strong coupling regime

  1. Bradley A. Moores,
  2. Lucas R. Sletten,
  3. Jeremie J. Viennot,
  4. and K. W. Lehnert
We investigate an acoustical analog of circuit quantum electrodynamics that facilitates compact high-Q (>20,000) microwave-frequency cavities with dense spectra. We fabricate and characterize
a device that comprises a flux tunable transmon coupled to a 300μm long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5MHz, exceeding the cavity loss rate (200kHz), qubit linewidth (1.1MHz), and the cavity free spectral range (4.8MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the cavity, we show that the dispersive shift behaves according to predictions from a generalized Jaynes-Cummings Hamiltonian. Finally, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.

Widely tunable on-chip microwave circulator for superconducting quantum circuits

  1. Benjamin J. Chapman,
  2. Eric I. Rosenthal,
  3. Joseph Kerckhoff,
  4. Bradley A. Moores,
  5. Leila R. Vale,
  6. Gene C. Hilton,
  7. Kevin Lalumière,
  8. Alexandre Blais,
  9. and K. W. Lehnert
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Non-reciprocity is created with a combination of frequency
conversion and delay, and requires neither permanent magnets nor microwave control tones, allowing on-chip integration with other superconducting circuits without expensive control hardware. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.

General purpose multiplexing device for cryogenic microwave systems

  1. Benjamin J. Chapman,
  2. Bradley A. Moores,
  3. Eric I. Rosenthal,
  4. Joseph Kerckhoff,
  5. and K. W. Lehnert
We introduce and experimentally characterize a general purpose device for signal processing in circuit quantum electrodynamics systems. The device is a broadband two-port microwave
circuit element with three modes of operation: it can transmit, reflect, or invert incident signals between 4 and 8 GHz. This property makes it a versatile tool for lossless signal processing at cryogenic temperatures. In particular, rapid switching (less than or equal to 15 ns) between these operation modes enables several multiplexing readout protocols for superconducting qubits. We report the device’s performance in a two-channel code domain multiplexing demonstration. The multiplexed data are recovered with fast readout times (up to 400 ns) and infidelities less than 0.01 for probe powers greater than 7 fW, in agreement with the expectation for binary signaling with Gaussian noise.