Multipartite Entanglement in Rabi Driven Superconducting Qubits

  1. M. Lu,
  2. J. L. Ville,
  3. J. Cohen,
  4. A. Petrescu,
  5. S. Schreppler,
  6. L. Chen,
  7. C. Jüenger,
  8. C. Pelletti,
  9. A. Marchenkov,
  10. A. Banerjee,
  11. W. Livingston,
  12. J.M. Kreikebaum,
  13. D. Santiago,
  14. A. Blais,
  15. and I. Siddiqi
Exploring highly connected networks of qubits is invaluable for implementing various quantum algorithms and simulations as it allows for entangling qubits with reduced circuit depth.
Here, we demonstrate a multi-qubit STAR (Sideband Tone Assisted Rabi driven) gate. Our scheme is inspired by the ion qubit Mølmer-Sørensen gate and is mediated by a shared photonic mode and Rabi-driven superconducting qubits, which relaxes restrictions on qubit frequencies during fabrication and supports scalability. We achieve a two-qubit gate with maximum state fidelity of 0.95 in 310 ns, a three-qubit gate with state fidelity 0.905\% in 217 ns, and a four-qubit gate with state fidelity 0.66 in 200 ns. Furthermore, we develop a model of the gate that show the four-qubit gate is limited by shared resonator losses and the spread of qubit-resonator couplings, which must be addressed to reach high-fidelity operations.

Demonstration of an All-Microwave Controlled-Phase Gate between Far Detuned Qubits

  1. S. Krinner,
  2. P. Kurpiers,
  3. B. Royer,
  4. P. Magnard,
  5. I. Tsitsilin,
  6. J.-C. Besse,
  7. A. Remm,
  8. A. Blais,
  9. and A. Wallraff
A challenge in building large-scale superconducting quantum processors is to find the right balance between coherence, qubit addressability, qubit-qubit coupling strength, circuit complexity
and the number of required control lines. Leading all-microwave approaches for coupling two qubits require comparatively few control lines and benefit from high coherence but suffer from frequency crowding and limited addressability in multi-qubit settings. Here, we overcome these limitations by realizing an all-microwave controlled-phase gate between two transversely coupled transmon qubits which are far detuned compared to the qubit anharmonicity. The gate is activated by applying a single, strong microwave tone to one of the qubits, inducing a coupling between the two-qubit |f,g⟩ and |g,e⟩ states, with |g⟩, |e⟩, and |f⟩ denoting the lowest energy states of a transmon qubit. Interleaved randomized benchmarking yields a gate fidelity of 97.5±0.3% at a gate duration of 126ns, with the dominant error source being decoherence. We model the gate in presence of the strong drive field using Floquet theory and find good agreement with our data. Our gate constitutes a promising alternative to present two-qubit gates and could have hardware scaling advantages in large-scale quantum processors as it neither requires additional drive lines nor tunable couplers.

Coherent microwave photon mediated coupling between a semiconductor and a superconductor qubit

  1. P. Scarlino,
  2. D. J. van Woerkom,
  3. U. C. Mendes,
  4. J. V. Koski,
  5. A. J. Landig,
  6. C. K. Andersen,
  7. S. Gasparinetti,
  8. C. Reichl,
  9. W. Wegscheider,
  10. K. Ensslin,
  11. T. Ihn,
  12. A. Blais,
  13. and A. Wallraff
Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots (QDs). They constitute a promising approach to quantum
information processing [1, 2], complementary to superconducting qubits [3]. Typically, semiconductor qubit-qubit coupling is short range [1, 2, 4, 5], effectively limiting qubit distance to the spatial extent of the wavefunction of the confined particle, which represents a significant constraint towards scaling to reach dense 1D or 2D arrays of QD qubits. Following the success of circuit quantum eletrodynamics [6], the strong coupling regime between the charge [7, 8] and spin [9, 10, 11] degrees of freedom of electrons confined in semiconducting QDs interacting with individual photons stored in a microwave resonator has recently been achieved. In this letter, we demonstrate coherent coupling between a superconducting transmon qubit and a semiconductor double quantum dot (DQD) charge qubit mediated by virtual microwave photon excitations in a tunable high-impedance SQUID array resonator acting as a quantum bus [12, 13, 14]. The transmon-charge qubit coherent coupling rate (∼21 MHz) exceeds the linewidth of both the transmon (∼0.8 MHz) and the DQD charge (∼3 MHz) qubit. By tuning the qubits into resonance for a controlled amount of time, we observe coherent oscillations between the constituents of this hybrid quantum system. These results enable a new class of experiments exploring the use of the two-qubit interactions mediated by microwave photons to create entangled states between semiconductor and superconducting qubits. The methods and techniques presented here are transferable to QD devices based on other material systems and can be beneficial for spin-based hybrid systems.

Nanowire Superinductance Fluxonium Qubit

  1. T. M. Hazard,
  2. A. Gyenis,
  3. A. Di Paolo,
  4. A. T. Asfaw,
  5. S. A. Lyon,
  6. A. Blais,
  7. and A. A. Houck
Disordered superconducting materials provide a new capability to implement novel circuit designs due to their high kinetic inductance. Here, we realize a fluxonium qubit in which a
long NbTiN nanowire shunts a single Josephson junction. We explain the measured fluxonium energy spectrum with a nonperturbative theory accounting for the multimode structure of the device in a large frequency range. Making use of multiphoton Raman spectroscopy, we address forbidden fluxonium transitions and observe multilevel Autler-Townes splitting. Finally, we measure lifetimes of several excited states ranging from T1=620 ns to T1=20 μs, by applying consecutive π-pulses between multiple fluxonium levels. Our measurements demonstrate that NbTiN is a suitable material for novel superconducting qubit designs.

Coherence properties of the 0-π qubit

  1. Peter Groszkowski,
  2. A. Di Paolo,
  3. A. L. Grimsmo,
  4. A. Blais,
  5. D.I. Schuster,
  6. A. A. Houck,
  7. and Jens Koch
Superconducting circuits rank among the most interesting architectures for the implementation of quantum information processing devices. The recently proposed 0-π qubit [Brooks et
al., Phys. Rev. A 87, 52306 (2013)] promises increased protection from spontaneous relaxation and dephasing. In practice, this ideal behavior is only realized if the parameter dispersion among nominally identical circuit elements vanishes. In this paper we present a theoretical study of the more realistic scenario of slight variations in circuit elements. We discuss how the coupling to a spurious, low-energy mode affects the coherence properties of the 0-π device, investigate the relevant decoherence channels, and present estimates for achievable coherence times in multiple parameter regimes.

Resonance fluorescence from an artificial atom in squeezed vacuum

  1. D.M. Toyli,
  2. A.W. Eddins,
  3. S. Boutin,
  4. S. Puri,
  5. D. Hover,
  6. V. Bolkhovsky,
  7. W. D. Oliver,
  8. A. Blais,
  9. and I. Siddiqi
We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect
the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. \textbf{58}, 2539-2542 (1987)], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.

Quantum Zeno effect in the strong measurement regime of circuit quantum electrodynamics

  1. D. H. Slichter,
  2. C. Müller,
  3. R. Vijay,
  4. S. J. Weber,
  5. A. Blais,
  6. and I. Siddiqi
We observe the quantum Zeno effect — where the act of measurement slows the rate of quantum state transitions — in a superconducting qubit using linear circuit quantum electrodynamics
readout and a near-quantum-limited following amplifier. Under simultaneous strong measurement and qubit drive, the qubit undergoes a series of quantum jumps between states. These jumps are visible in the experimental measurement record and are analyzed using maximum likelihood estimation to determine qubit transition rates. The observed rates agree with both analytical predictions and numerical simulations. The analysis methods are suitable for processing general noisy random telegraph signals

Multiplexed Readout of Transmon Qubits with Josephson Bifurcation Amplifiers

  1. V. Schmitt,
  2. X. Zhou,
  3. K. Juliusson,
  4. A. Blais,
  5. P. Bertet,
  6. D. Vion,
  7. and D. Esteve
Achieving individual qubit readout is a major challenge in the development of scalable superconducting quantum processors. We have implemented the multiplexed readout of a four transmon
qubit circuit using non-linear resonators operated as Josephson bifurcation amplifiers. We demonstrate the simultaneous measurement of Rabi oscillations of the four transmons. We find that multiplexed Josephson bifurcation is an high-fidelity readout method, the scalability of which is not limited by the need of a large bandwidth nearly quantum-limited amplifier as is the case with linear readout resonators.

Superconducting qubit as a probe of quantum fluctuations in a nonlinear resonator

  1. Maxime Boissonneault,
  2. A. C. Doherty,
  3. F. R. Ong,
  4. P. Bertet,
  5. D. Vion,
  6. D. Esteve,
  7. and A. Blais
In addition to their central role in quantum information processing, qubits have proven to be useful tools in a range of other applications such as enhanced quantum sensing and as spectrometers
of quantum noise. Here we show that a superconducting qubit strongly coupled to a nonlinear resonator can act as a probe of quantum fluctuations of the intra-resonator field. Building on previous work [M. Boissoneault et al. Phys. Rev. A 85, 022305 (2012)], we derive an effective master equation for the qubit which takes into account squeezing of the resonator field. We show how sidebands in the qubit excitation spectrum that are predicted by this model can reveal information about squeezing and quantum heating. The main results of this paper have already been successfully compared to experimental data [F. R. Ong et al. Phys. Rev. Lett. 110, 047001 (2013)] and we present here the details of the derivations.

Signatures of Hong-Ou-Mandel Interference at Microwave Frequencies

  1. M. J. Woolley,
  2. C. Lang,
  3. C. Eichler,
  4. A. Wallraff,
  5. and A. Blais
Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, was recently demonstrated with emph{microwave-frequency} photons by Lang emph{et
al.}\,\cite{lang:microwaveHOM}. This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of \emph{pulsed} Gaussian or Lorentzian single microwave photons, and (ii) resonant fluorescent microwave fields from \emph{continuously-driven} circuit QED systems. The calculations include the effects of the finite bandwidth of the detection scheme. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Ref. \onlinecite{lang:microwaveHOM} was performed with trains of \emph{Lorentzian} single photons, and very good agreement between the calculations and the experimental data was obtained.