Tuning coupling between superconducting resonators with collective qubits

  1. Qi-Ming Chen,
  2. Re-Bing Wu,
  3. Luyan Sun,
  4. and Yu-xi Liu
By coupling multiple artificial atoms simultaneously to two superconducting resonators, we construct a quantum switch that controls the resonator-resonator coupling strength from zero to a large value proportional to the number of qubits. This process is implemented by switching the qubits among different \emph{subradiant states}, where the microwave photons decayed from different qubits interfere destructively so that the coupling strength keeps stable against environmental noise. Based on a two-step control scheme, the coupling strength can be switched at the \emph{nanosecond} scale while the qubits are maintained at the coherent optimal point. We also use the quantum switch to connect multiple resonators with a programmable network topology, and demonstrate its potential applications in quantum simulation and scalable quantum information storage and processing.

leave comment