Secure quantum remote state preparation of squeezed microwave states

  1. S. Pogorzalek,
  2. K. G. Fedorov,
  3. M. Xu,
  4. A. Parra-Rodriguez,
  5. M. Sanz,
  6. M. Fischer,
  7. E. Xie,
  8. K. Inomata,
  9. Y. Nakamura,
  10. E. Solano,
  11. A. Marx,
  12. F. Deppe,
  13. and R. Gross
Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired and known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. We quantify security in our implementation using the concept of the one-time pad. Our results represent a significant step towards microwave quantum networks between superconducting circuits.

leave comment