Asymmetric frequency conversion in nonlinear systems driven by a biharmonic pump

  1. Archana Kamal,
  2. Ananda Roy,
  3. John Clarke,
  4. and Michel H. Devoret
A novel mechanism of asymmetric frequency conversion is investigated in nonlinear dispersive devices driven parametrically with a biharmonic pump. When the relative phase between the first and second harmonics combined in a two-tone pump is appropriately tuned, nonreciprocal frequency conversion, either upward or downward, can occur. Full directionality and efficiency of the conversion process is possible, provided that the distribution of pump power over the harmonics is set correctly. While this asymmetric conversion effect is generic, we describe its practical realization in a model system consisting of a current-biased, resistively-shunted Josephson junction. Here, the multiharmonic Josephson oscillations, generated internally from the static current bias, provide the pump drive.

leave comment